From Periphery to Core: Economic Adjustments to High Speed Rail

Arne Feddersen, University of Southern Denmark

Realizing the Vision of a High-Speed Rail System in California Berkeley, May 2-3, 2011 ntroduction

Projec

Are

Brief From Periphery to Core

- HSR Cologne-FFM, Germany with intermediate stations Montabaur and Limburg
- Limitations
 - No CBA
 - No statement "pro" / "con" HSR
 - No substitute for CBA
 - Certainly no statement pro intermediate stops
- Merits
 - Interesting case study: large and exogenous variation in accessibility
 - Establishes causal (and robust) impact of HSR on economic performance
 - Complementary approach to CBA
 - Focus on agglomeration effects
 - Foundation for the prediction of economic effects

A. Intro

Transport Infrastructure from the (N)EG Perspective Centrality is Not Exogenous

- Central prediction of (N)EG models (e.g. Krugman, 1991)
 - Core regions benefit from centrality with respect to other region's markets due to scale economies and lower transport cost
- Centrality is not exogenous to economic policy, but depends on transport infrastructure
 - Permanent impact of temporary investment? (vs. persistency to shocks, e.g. Davis & Weinstein, 2002, AER, Brakman et. al, 2004, JEG)
 - Transport innovations offer interesting case-studies on the impact of positive man-made and reproducible variation in market access (vs. Redding & Sturm, 2008, AER)
 - Cologne-FFM HSR particularly interesting due to exogenous variation
- Identification procedure
 - 1) Area, 2) Period, 3) Robustness, 4) Persistency

B. The Project

ency C

Conclusion

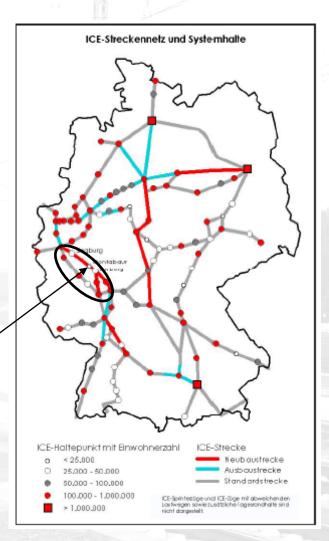
The Cologne-Frankfurt High-Speed Rail Track The Project

- Inauguration: 2002
- Connects two of the largest German Agglomerations
 - Rhein/Ruhr metropolitan area = 11 million habitants
 - Frankfurt/Rhein-Main metropolitan area = 5.7 million habitants
 - up to 300 km/h
 - Reduces travel time from 133 to 59 minutes, corresponding to 55%
- "Intermediate" size project
 - €6 billion Investment Volume
 - Small enough to be replicable

Ar

Period

Robustness


stency ____

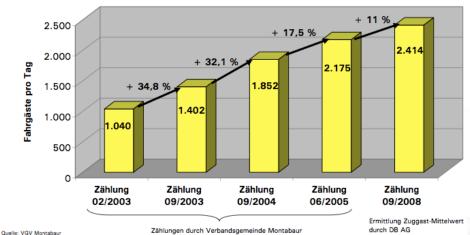
Concl<u>usion</u>

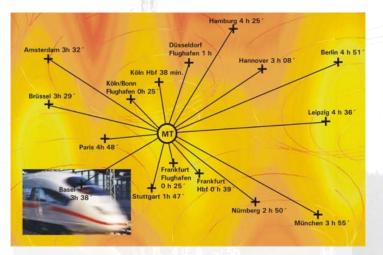
Montabaur & Limburg

German Federalism and Economic Exogineity

- Special feature is the connection of to *peripheral* towns to economic *cores*
 - aprox. 40 minutes Travel times to the cores
- Connection not based on economic, but on (exogenous) political considerations
 - Federalism Games
 - Provision of land for track beds conditional on stations
- Track discussed since the early 1960s
 - Decision to build in 1969!
 - 30 years of bargaining, various obstacles, etc.
 - Exogenous timing...

Are


Period


Robustness

Montabaur & Limburg


Anecdotal Evidence

Increasing passenger numbers (expected: 300)

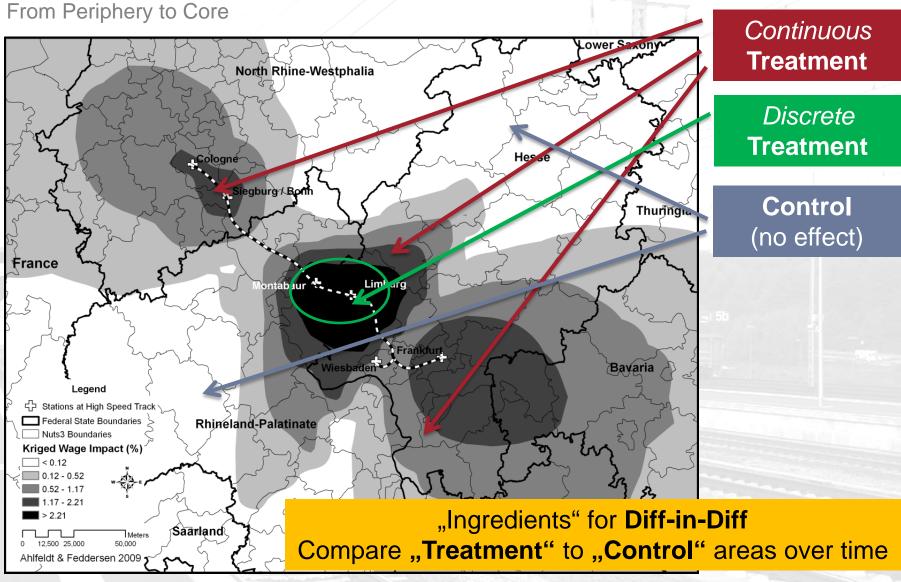
- Economic Boom
 - ICE-park "Montabaur"
 - New firms (e.g. 1&1)
 - Raising rents, employment, etc.

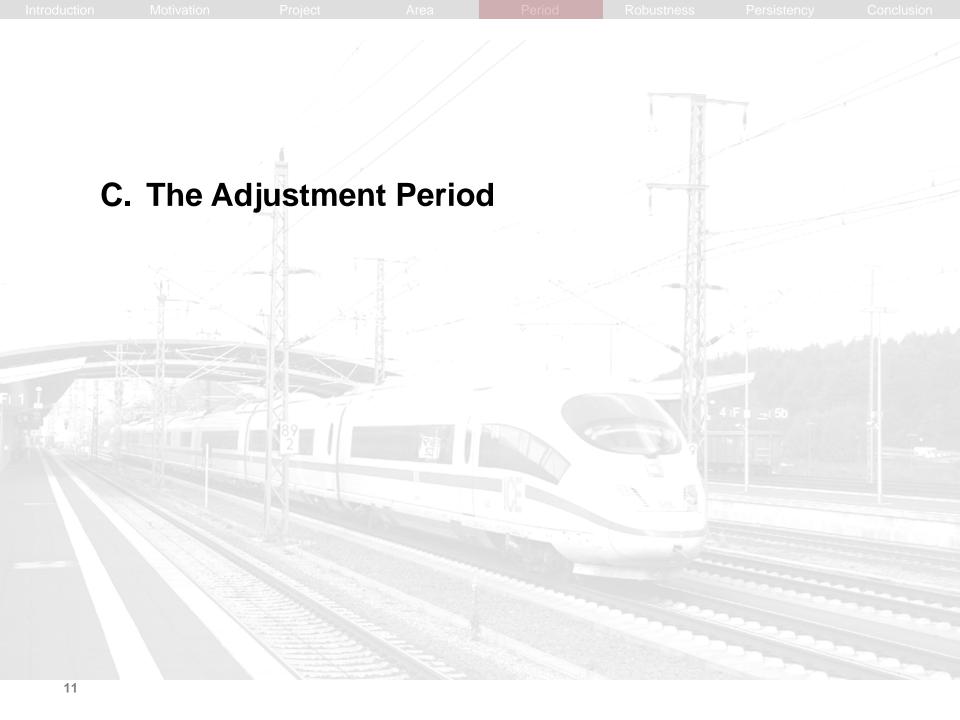
Introduction

Ar

C. The Impact Area

Area

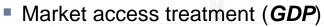

Period

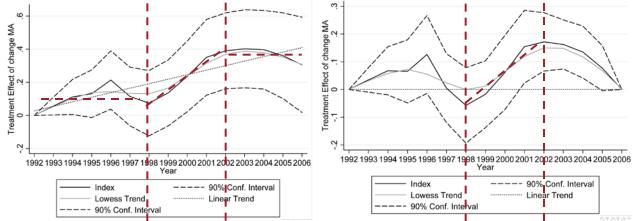

Robustness

sistency

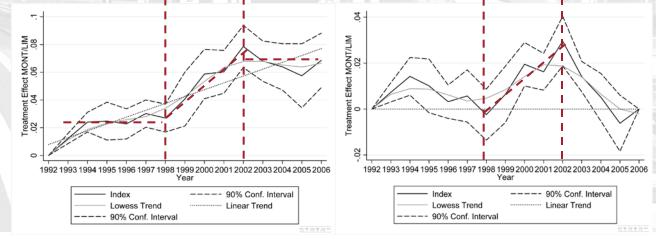
Conclusion

The Shock


ect

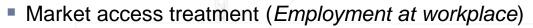

Perio

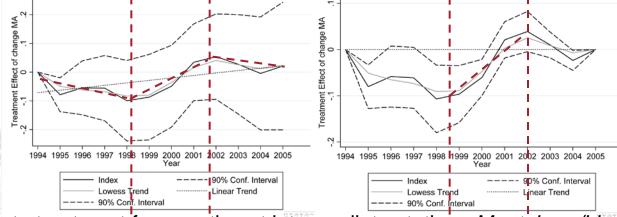
Conclusion


Identifying the Adjustment Period

Diff-in-Diff with Time-Varying Treatments

Discrete treatment for counties at intermediate stations Montabaur/Limburg (GDP)


Are


Period

Robustness


Identifying the Adjustment Period

Time-Varying Treatments

Discrete treatment for counties at intermediate stations Montabaur/Limburg (GDP/capita)

Conclusion

Treatment Effects

Intervention

- Market access treatment (GDP)
 - Significant effect in narrow treatment (discrete) area
 - Reduced/entirely explained by MA treatment
 - MA elasticity/treatment approx. 0.2-0.3

and the second s						
	(1)	(2)	(3)	(4)	(5)	(6)
MA Treatment	0.271*	-	0.212	0.217		0.213
$x_i^b \times POST$	(0.118)		(0.169)	(0.143)		(0.214)
Discrete Treatment	89	0.047**	0.022		0.027**	0.001
$x_i^{\alpha} \times POST$		(0.010)	(0.023)		(0.006)	(0.028)
Year Effects	Yes	Yes	Yes	Yes	Yes	Yes
County Effects	Yes	Yes	Yes	Yes	Yes	Yes
Anticipation Effects (MA) x_i^{α}	Yes	-	Yes	Yes		Yes
Anticipation Effects (Dummy) x_i^b		Yes	Yes		Yes	Yes
Trend Effects		-		Yes	Yes	Yes
Observations	1725	1725	1725	1725	1725	1725
R-squared (within)	0.84	0.84	0.84	0.94	0.94	0.94

Introduction

Proj

Are

Period

Robustness

sistency

Conclusion

D. Conditional Impact (Robustness)

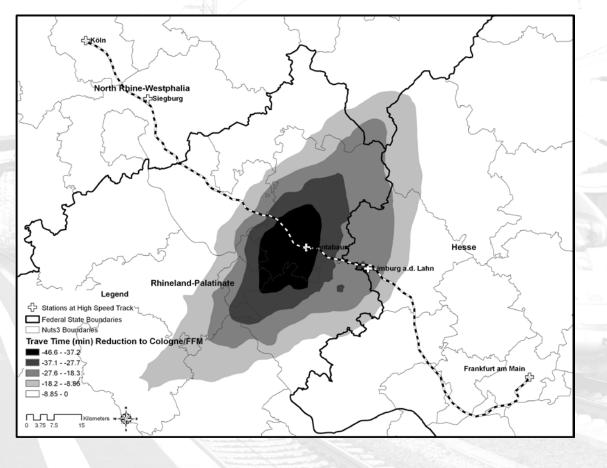
Are

Period

Conclusion

GDP Growth Impact (1998-2002)

Conditional Treatment


- North-Rhine Westphalia, Hesse, Rhineland-Palatinate
- Iog(GPD), Iog(GDP/Capita), Iog(GDP/ha) (1998)
- Iog(elevation), log(distance to river), log(MApre), log(dist_Cologne), log(dist_FFM)
- share of mining, services, manufacturing at GVA (1998)

pre-trend

Log Diff GDP	(1)	(2)	(3)	(4)	(5)	(6)
Log Diff MA	0.311**	0.218**	0.296**	0.208	0.246+	0.247+
	(0.093)	(0.068)	(0.111)	(0.127)	(0.139)	(0.140)
Log Diff GDP	2	2				0.011
(1992 - 1998)	2					(0.114)
State Effects		Yes	Yes	Yes	Yes	Yes
GDP Controls	- CAR		Yes	Yes	Yes	Yes
Geo Controls				Yes	Yes	Yes
Ind Controls					Yes	Yes
Observations	114	114	114	114	114	114
R-squared	0.05	0.10	0.21	0.28	0.3	0.3

 $x_i^c \stackrel{\text{Introduction}}{=}$

IV: Change in minimum travel time to economic cores (FFM/Cologne)

Introduction

Projec

Area

Robustness

Conclusion

Endogineity

Conditional Treatment

- 2SLS with IVs
 - Change in travel time to closest core

Dummy for counties adjacent to intermediate stations

- Magnitude and significance level of treatment coefficients slightly increase
- Limited endogeneity concerns

	(1)	(1)
Log Diff MA	0.319*	0.296*
	(0.125)	(0.144)
State Effects	Yes	Yes
GDP Controls		Yes
Geo Controls		Yes
Ind Controls		Yes
Observations	114	114
R-squared	0.09	0.30

Concl<u>usion</u>

Construction and Substitution Effects

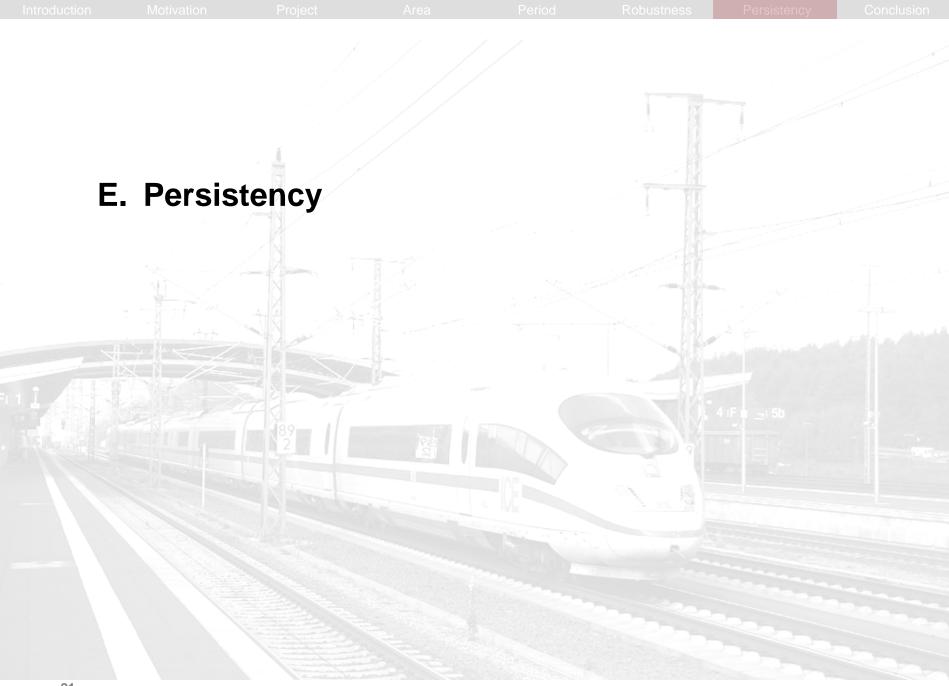
Conditional Treatment

- Construction: Dummy for counties along new track
- Substitution: Dummy for counties along old track

- Here	(1)	(2)	(3)
Log Diff MA	0.316*	0.246+	0.323*
	(0.138)	(0.139)	(0.139)
Construction	-0.033*		-0.035*
	(0.015)		(0.018)
Substitution		0.002	-0.008
		(0.016)	(0.017)
State Effects	Yes	Yes	Yes
GDP Controls	Yes	Yes	Yes
Geo Controls	Yes	Yes	Yes
Ind Controls	Yes	Yes	Yes
Observations	114	114	114
R-squared	0.33	0.3	0.33
the second se			

A

Industry Turnover


Conditional Treatment

Excess Churning Rate (Duranton, 2007, AER), Findeisen & Suedekum (2008, JUE)

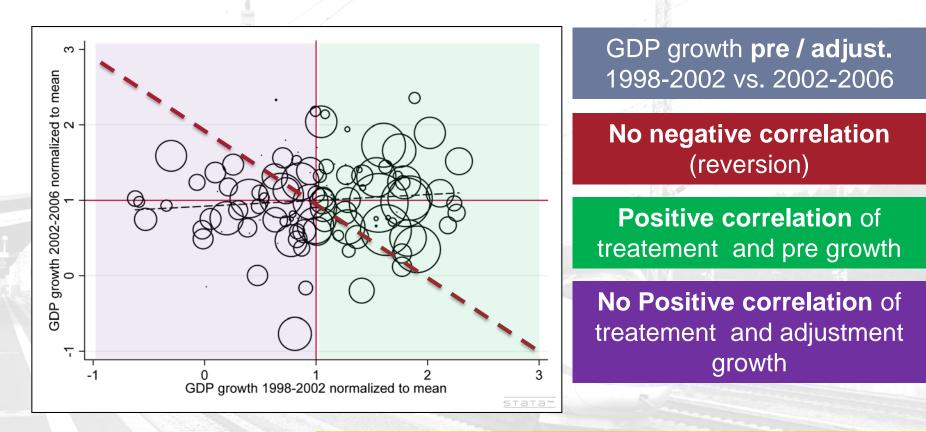
 $ExcChurn_{i} = \frac{1}{T} \left(\sum_{t} \sum_{z} \frac{|GVA(z, i, t+1) - GVA(z, i, t)|}{GVA(i, t)} \right) - \frac{1}{T} \left(\sum_{t} \frac{|GVA(i, t+1) - GVA(i, t)|}{GVA(i, t)} \right)$

- Change in industry structure in a county relative to the study area
- Negative impact =>"structural change losers"

	(1)	(2)	(3)	(4)
Log Diff MA	0.230*	0.291+	0.289+	0.274*
- AN 7	(0.094)	(0.147)	(0.152)	0.129
ExChurn	-0.015*	-0.012+	-0.017*	-0.0058
	(0.006)	(0.007)	(0.007)	(0.012)
ExChurn x NRW			0.007	
			(0.012)	N 105 12 1-
State Effects	Yes	Yes	Yes	Yes
GDP Controls		Yes	Yes	Yes
Geo Controls		Yes	Yes	Yes
Ind Controls		Yes	Yes	
Const & Subst Controls		Yes	Yes	Yes
ExChurn instrumente				Yes
Observations	114	114	114	114
R-squared	0.16	0.36	0.36	0.30

Ar

Period


Robustness

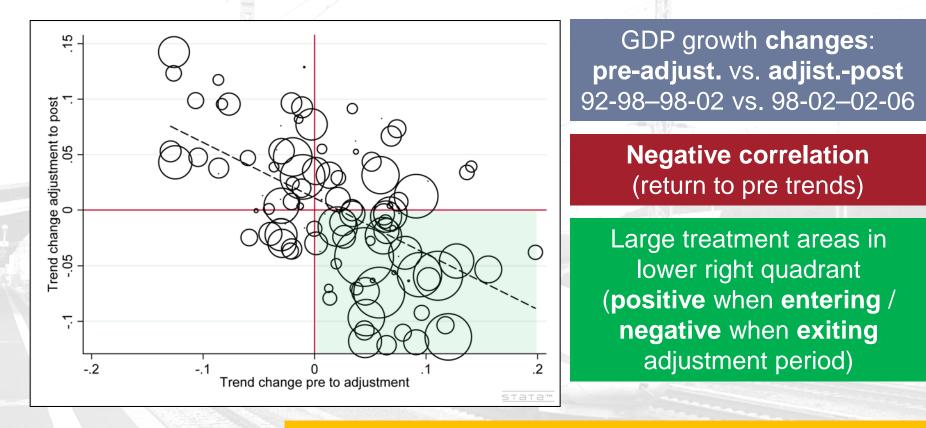
sistency

Conclusion

Growth in Adjustment and Post-Period

Reversion of Trends?

No reversion of the shock/adjustment – persistency


Robustness

stency

Conclusion

Change in Growth into Adjustment and Post-Period

Reversion of Changes in Trends?

Return to pre-trend at higher level – persistent effect

Persistency Tests

(Extended) Davis/Weinstein (2002) Methodology

- No Reversion
- Return to pre-trend

	(1)	(2)	(3)	(4)
	Growth (2002-2006)	Growth (2002-2006)	Growth (2002-2006)	Difference in Growth (1998-02)- (2002-06)
Log Diff GDP	-0.274	-0.264	-0.273	
(1998-2002)	(0.239)	(0.270)	(0.270)	
Difference Growth				-1.119**
(1995-98)-(1998-02)				(0.335)
State Effects		Yes	Yes	
GDP Controls		Yes	Yes	
Geo Controls		Yes	Yes	
Ind Controls		Yes	Yes	
ExChurn		Yes	Yes	
Log Diff GDP (1995-98)			Yes	
Observations	114	114	114	114
R-squared	0.01	0.26	0.26	0.05

Introduction

Proje

Ar

E. Conclusion

Conclusion

From Periphery to Core

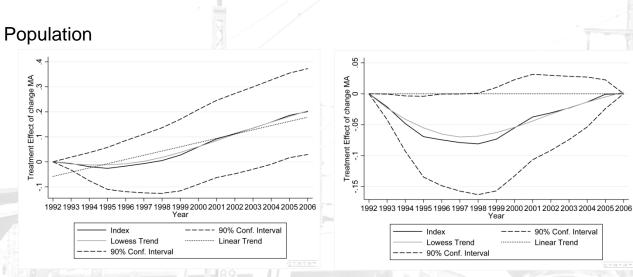
- HSR Cologne-FFM, Germany with intermediate stations Montabaur and Limburg chosen due to exogenous political considerations
- Significant impact
 - Market access elasticity about 0.25 10% increase in acces => 2.5% increase in GDP
 - Adjustment occurs in anticipation to HSR opening (four year period)
 - Temporary adjustments growth yields permanent GDP shift (in levels)
- HSR (transport infrastructure) more likely to yield permanent shifts in regional economic activity through temporary spending than other policies
- MA treatment can be used to predict regional economic effects
- No CBA no substitute for CBA
- No pladoyer for intermediate stops

Thank you!

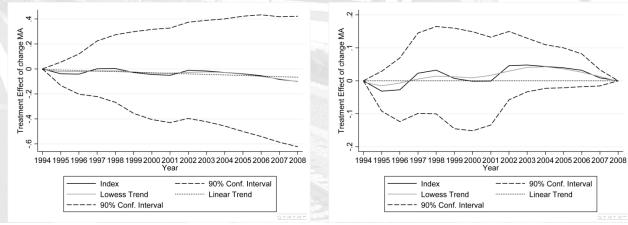
Intro	duction	Motivation	Project	Area	Period	Robustness	Persistency	Cond
		atial Weig			fications		7	
	Spatial Weight 0 .2 .4 .6 .8 1		50		alf-life trave		nin	
		Nu	ts3	- Nuts2	——- Nuts1	····· Nuts	0	

(1) (2) (3) GDP GDP/Capita POP STUDY x YEAR ₁₉₉₃ -0.000 -0.008 -0.008 (0.005) (0.009) (0.010)	(4) EMP
STUDY x YEAR ₁₉₉₃ -0.000 -0.008 -0.008 (0.005) (0.009) (0.010)	ЕМР
Pre-lest (0.005) (0.009) (0.010)	
Appendix STUDY x YEAR ₁₉₉₄ -0.001 -0.014* -0.016	
(0.005) (0.008) (0.010)	
STUDY x YEAR ₁₉₉₅ -0.002 -0.007 -0.010	
(0.005) (0.008) (0.010)	
Study area vs. STUDY x YEAR ₁₉₉₆ -0.003 -0.012 -0.015*	-0.000
rest of Germany (0.009) (0.009) (0.009)	(0.004)
STUDY x YEAR ₁₉₉₇ -0.004 -0.009 -0.013	0.000
(0.004) (0.007) (0.009)	(0.004)
STUDY x YEAR ₁₉₉₈ -0.005 -0.019*** -0.024***	-0.001
(0.004) (0.007) (0.009)	(0.003)
STUDY x YEAR ₁₉₉₉ -0.007 -0.026*** -0.033***	-0.001
(0.004) (0.007) (0.009)	(0.003)
STUDY x YEAR ₂₀₀₀ -0.009** -0.032*** -0.041***	-0.002
(0.004) (0.008) (0.009)	(0.003)
STUDY x YEAR ₂₀₀₁ -0.012*** -0.042*** -0.054***	-0.003
(0.004) (0.008) (0.009)	(0.003)
STUDY x YEAR ₂₀₀₂ -0.015*** -0.033*** -0.048***	-0.005
(0.005) (0.008) (0.009)	(0.004)
STUDY x YEAR ₂₀₀₃ -0.017*** -0.027*** -0.044***	-0.009**
(0.005) (0.008) (0.010)	(0.004)
STUDY x YEAR ₂₀₀₄ -0.019*** -0.026*** -0.044***	-0.012**
(0.005) (0.008) (0.010)	(0.005)
STUDY x YEAR ₂₀₀₅ -0.020*** -0.028*** -0.048***	-0.017***
(0.005) (0.009) (0.010)	(0.005)
STUDY x YEAR ₂₀₀₆ -0.022*** -0.031*** -0.053***	
(0.005) (0.009) (0.011)	
County effects Yes Yes Yes	Yes
Year effects Yes Yes Yes	Yes
Observations 4890 4890 4890	3904
29 R-squared 1.00 0.98 1.00	1.00

Period


Robustness

stency (


Conclusion

Time-Varying Treatments (MA-Treatment)

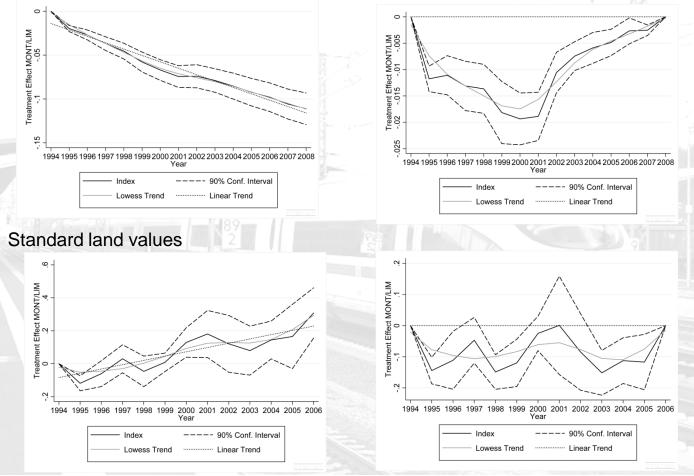
Appendix

Share of out commuters

Are

Period

Robustness


tency C

Concl<u>usion</u>

Time-Varying Treatments (Discrete)

Appendix

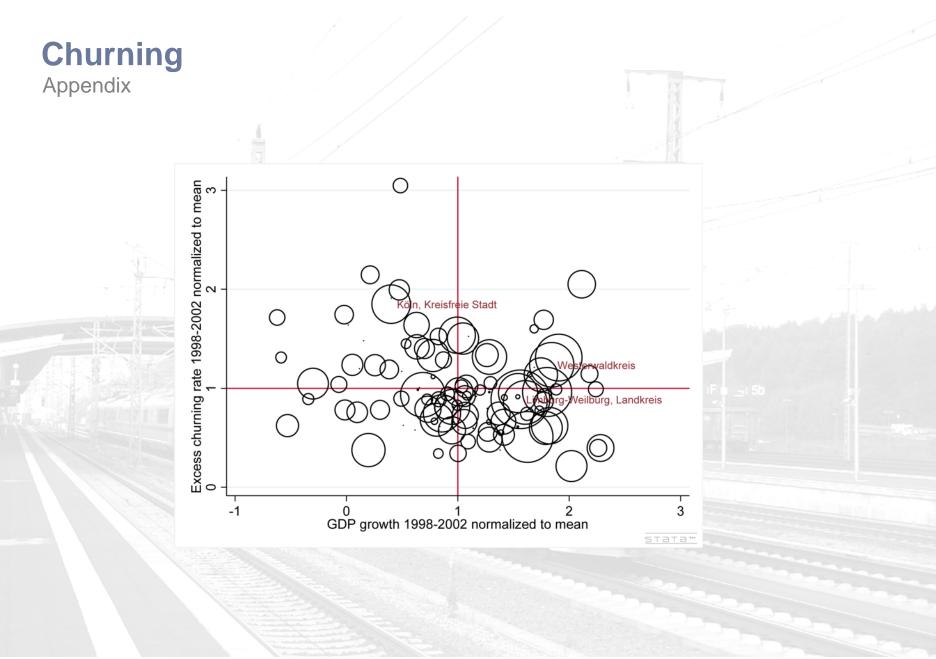
Share of out-commuters (at resident population)

Conclusion

Endogineity – 1st Stage Results Appendix

	(1)	(1)			
Discrete	0.072**	0.079**			
(X_i^a)	(0.018)	(0.020)			
Log Diff Travel Time	-0132**	-0.076***			
(x_i^c)	(0.031)	(0.036)			
State Effects	Yes	Yes			
GDP Controls		Yes			
Geo Controls		Yes 4 IF m _ 15b			
Ind Controls		Yes			
Observations	114	114			
R-squared	0.49	0.86			
Kleinbergen-Paap rk LM stat (P-Val)	5.203 (0.074)	5.930 (0.0516)			
F-stat (Kleinbergen-Paap rk Wald)	29.803	18.649			
Hansen-Sargan stat (P-Val)	0.767 (0.381)	0.243 (0.622)			

Are


Period

Robustness

Treatment Heterogeneity

Appendix

				M RC2
(1)	(2)	(3)	(4)	(5)
0.247+	0.243+	0.248+	0.250+	0.185
(0.138)	(0.141)	(0.142)	(0.149)	(0.268)
0.034	0.047	-0.035	-0.023	0.076
(0.233)	(0.232)	(0.255)	(0.268)	(0.268)
Рор	GDP/pop	Pop/area	Manufact.	Services
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
114	114	114	114	114
0.3	0.3	0.3	0.3	0.3
	0.247+ (0.138) 0.034 (0.233) Pop Yes Yes Yes Yes 114	0.247+ 0.243+ (0.138) (0.141) 0.034 0.047 (0.233) (0.232) Pop GDP/pop Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 114 114	0.247+0.243+0.248+(0.138)(0.141)(0.142)0.0340.047-0.035(0.233)(0.232)(0.255)PopGDP/popPop/areaYes114114114	0.247+ 0.243+ 0.248+ 0.250+ (0.138) (0.141) (0.142) (0.149) 0.034 0.047 -0.035 -0.023 (0.233) (0.232) (0.255) (0.268) Pop GDP/pop Pop/area Manufact. Yes Yes Yes Yes Yes Yes Yes

Determinants of Churning

Appendix

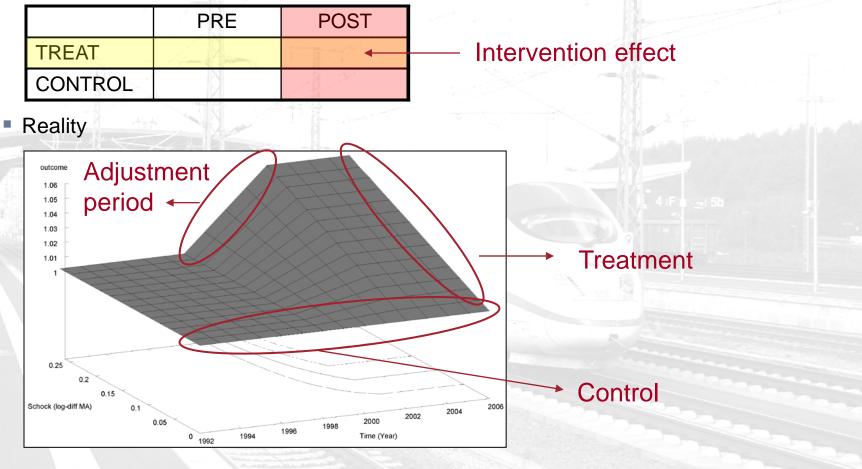
	(1)	(2)	(3)	(4)	(5)
Log of	-0.184+	-0.187+	-0.330**	-0.411**	-0.406**
Population	(0.105)	(0.105)	(0.111)	(0.127)	(0.119)
Log Diff MA		0.317	-0.345	-0.912	-3.15
+++		(1.683)	(1.561)	(2.680)	(2.716)
GDP Controls			Yes	Yes	Yes
Geo Controls	17			Yes	Yes
Ind Controls		20			Yes
Observations	114	114	114	114	114
R-squared	0.02	0.02	0.14	0.17	0.28
The second second second					

Conclusion

Persistency Test – 1st Stage Results

Appendix

	(1)	(2)		
	Growth(1998-2002)	Difference in Growth		
Log Diff MA	0.255+	0.342+		
)x _i ^a	(0.134)	(0.197)		
Discrete Treatment	0.021	0.008		
)xib	(0.019)	(0.031) 4 F		
Observations	114	114		
R-squared	0.05	0.04		
Kleinbergen-Paap rk LM stat (P-Val)	6.095 (0.048)	5.515 (0.064)		
F-stat (Kleinbergen-Paap rk Wald)	13.068	4.808		
Hansen-Sargan stat (P-Val)	0.089 (0.765)	1.915 (0.384)		


Area

Period

The Identification Strategy

Being Flexible I

Classical identification problem

The Travel Time Matrices

Modeling Accessibility

Two complete travel time matrices are generated connecting

- 3,128 municipalities within narrow study area of 3 Bundesländer
- 1,335 Nuts3 regions covering almost all of Europe
- Hybrid set of 4,325 locations
- Pre-period
 - All locations are connected based on a straight-line matrix
 - 75 km/h is an approximation for average car velocity in the study area
 - Upgrade to route planner travel times in progress
 - (18,992,164/2 = 9.496.082 travel times ~ 1 year of net-computing time)
- Post-period
 - use the train if combined network path to and from any train station is faster than without the use of the train
 - otherwise use car

Period

Transport Cost

Modeling Accessibility

Transport cost parameter set ot 0.02

$$x_{h} = \log \left(\sum_{g} GDP_{gt} \exp(-\alpha) \times tt_{hgt+1}) \right) - \log \left(\sum_{g} GDP_{gt} \exp(-\alpha) \times tt_{hgt}) \right)$$

Nominal wage equation

 $\log(w_i) = \alpha_0 + \alpha_1 \log(\sum_{i} GDP_i \exp(-\alpha_i tt_{ij}^{car}) + \varepsilon_i)$

NLS (SAR) α₁ 0.285 (0.193), α₂0.023 R² 0.475, N=1,335 (NUTS3)

Rail commuting probability function (cumulative density of travel time)

$$1 - F(n) = \sum_{m > n} p(n) = \beta_1 \exp(-\beta_2 TIME_n) + \sigma_n$$

 NLS β₁ 1.632, β₂0.0205 R² 0.973, N=30,590 (representative 5% sample of 2000 US census)

Conclusion

Transport cost

Modeling Accessibility

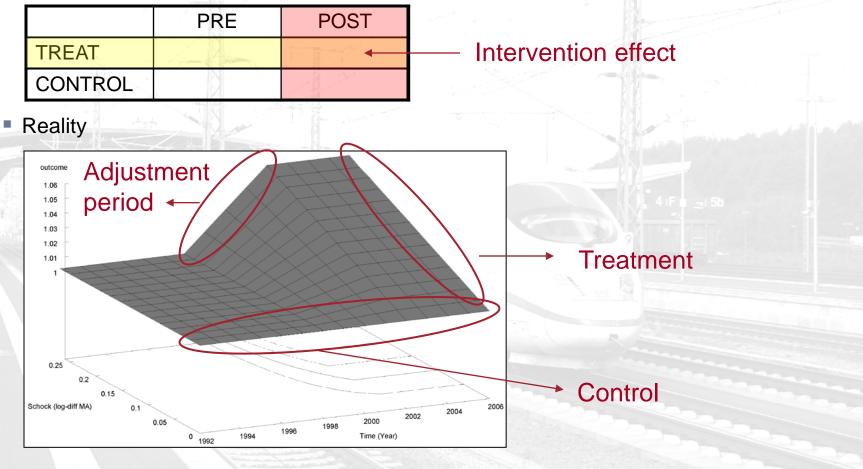
Transport cost parameter set to 0.02

$$x_{h} = \log \left(\sum_{g} GDP_{gt} \exp(-\alpha \times tt_{hgt+1}) \right) - \log \left(\sum_{g} GDP_{gt} \exp(-\alpha \times tt_{hgt}) \right)$$

Nominal wage equation

$$\Delta \log(w_h) = \alpha_1 \log \left(\sum_g GDP_{gt} \exp(-\alpha \times tt_{hgt+1}) \right) - \log \left(\sum_g GDP_{gt} \exp(-\alpha \times tt_{hgt}) \right)$$

0.2


Period

Conclusion

The Identification Strategy

Being Flexible II

Classical identification problem

Conclusion

Identifying the Adjustment Period

Time-Varying Treatments

- Identification specification with time varying treatment effects
 - Tests for significant treatment effects relative to the base year
 - Conditional on time-invariant location characteristics and common macro-shocks

 $\log(y_{it}) = \vartheta_i + \varphi_t + \sum_{1993}^{2006} \gamma_u x_i \times YEAR_u + \varepsilon_{it}$

Alternative specification tests for a significant deviation from linear trend

$$\log(y_{it}) = \vartheta_i + \varphi_t + \varphi_t + \frac{\theta x_i \times TREND_t}{1993} + \sum_{1993}^{2005} \gamma_u x_i \times YEAR_u + \varepsilon_{it}$$

Period

Robustness

Conclusion

Identifying the Adjustment Period

Time-Varying Treatments

- Market access treatment
 - Calculate for municipalities (h) and aggregate to counties (i) weighted by population

$$x_i^{\alpha} = \log\left(\sum_{\mathbf{h}} \frac{P_{\mathbf{h}}}{P_i} \sum_{g} [Y_g \exp(-\alpha_2] t t_{hgt+1})\right) - \log\left(\sum_{\mathbf{h}} \frac{P_h}{P_i} \sum_{g} [Y_g \exp(-\alpha_2] t t_{hgt})\right)$$

Discrete treatment for counties at intermediate stations Montabaur/Limburg

 $x_i^b = \begin{cases} 1 \text{ for "Rhein Lahn Kreis", "Rhein Sieg Kreis", "Westerwaldkreis" \\ 0 \text{ otherwise} \end{cases}$

- Reduce study are to the federal states of North-Rhine Westphalia, Hesse& Rhineland-Palatinate to increase homogeneity
 - Pre-tests show that study area as a whole receives no positive treatment compared to the rest of West-Germany

Treatment Effects

The Specification

- Test for significant treatment effect (level-shift)
 - controlling for anticipation (1998-2001), time and year effects as well as location specific trends
 - Featuring continuous (MA) and discrete treatment

$$\log(y_{it}) = \vartheta_i + \varphi_t + \sum_{n \text{ ITREND}_{it}} \prod_{n \text{ IPPP}} \gamma_{un} x_i \times YEAR_{un} + \sum_{n \text{ IPPP}} \delta_n x_{in} \times POST_t + \varepsilon_{it}$$

Interpretation:
$$\log(y_{i,POST=1}) - \log(y_{i,POST=0}) = \delta x_{in}$$

relative trend
Market access elasticity
 $\delta_{\alpha} = \frac{\log(y_{i,POST=1}) - \log(y_{i,POST=0})}{\log(MA_{i,POST=0}) - \log(MA_{i,POST=0})}$
Standard diff-in-diff
 $\delta_{b} = (\log(y_{i,POST=1}) - \log(y_{i,POST=0}))^{x_{i}^{b}=1} - (\log(y_{i,POST=1}) - \log(y_{i,POST=0}))^{x_{i}^{b}=0}$

Introduction

Area

Conclusion

Endogineity Conditional Treatment

- Is the market access shock really exogenous?
 - Intermediate stations provide exogenous source of variation
 - Timing of the track exogenous
 - Discussed, opposed, negotiated since the 1960s
 - Approval independent from performance during "adjustment period"
 - Treatment only significant during the adjustment period (more evidence later)
- Use instruments
 - Correlated with MA treatment
 - Only impact via changing access to markets (identifying assumption)
 - Only use exogenous variation related to the intermediate stations

Conclusion

Intermediate Summary

Significant Impact

- Significant positive adjustment between 1998-2002
 - Within areas that benefited from increase in access to markets (MA treatment)
 - Limited endogineity concerns
- Robust to
 - Local economic conditions
 - Geography
 - Construction & substitution
 - Industry turnover
- Open questions
 - Persistency

Ar

Conclusion

Treatment Effect in Pre/Post-Periods

Conditional Treatment

- Treatment effects before and after the adjustment period
- MA treatment negative and not significant before and after adjustment period
- Weak negative trends

	(1)	(2)	(3)	(4)
Log Diff MA	-0.053	-0.139	-0.092	-0.141
	(0.086)	(0.126)	(0.091)	(0.102)
Period	1995-1998	1995-1998	2002-2006	2002-2006
State Effects		Yes		Yes
GDP Controls		Yes	100	Yes
Geo Controls		Yes		Yes
Ind Controls		Yes		Yes
ExChurn		Yes		Yes
Observations	114	114	114	114
R-squared	0	0.31	0.01	0.28

Growth Impact

Conditional Treatment

Long-difference over adjustment period (1998-2002)

 $\log(y_{it+1}) - \log(y_{it}) = \phi(\log(MA_{it+1}) - \log(MA_{it})) + Z_i\Psi + \xi_i + \varepsilon_i$

- Impact of market access, conditional on controls
- Market access elasticity parameter
- Unaffected areas serve as a control group)

 $\phi(\log(MA_{it+1} - \log(MA_{it}))) = (\log(y_{it+1}) - \log(y_{it}))^T - (\log(y_{it+1}) - \log(y_{it}))^C$

Persistency

Reversion in Levels and Trends

Davis & Weinstein (2002) test for persistency of temporary shock

Instrument with shock measure $\log(y_{it+2}) - \log(y_{it+1}) = (\rho - 1)(\log(y_{it+1}) - \log(y_{it})) + \mu$ discrete & MA treatment adjustment post

• Permanent impact if $\rho = 1$, $(\rho - 1) = 0$ Fully dissipated if $\rho = 0$, $(\rho - 1) = -1$

For changes in growth rates

discrete & MA treatment

 $[\log(y_{it+2}) - \log(y_{it+1})] - [\log(y_{it+1}) - \log(y_{it})] = (\lambda - 1)([\log(y_{it+1}) - \log(y_{it})] - [\log(y_{it}) - \log(y_{it-1})]) + \mu$ adjustment adjustment pre post

- Permanent impact if $\lambda = 0$, $(\lambda 1) = -1$
- Sustainable trend if $\lambda > 0$, $(\lambda 1) > -1$ if $\lambda < 0$, $(\lambda - 1) < -1$
- Reversion

Conclusion

Economics Viability

Tax Revenues

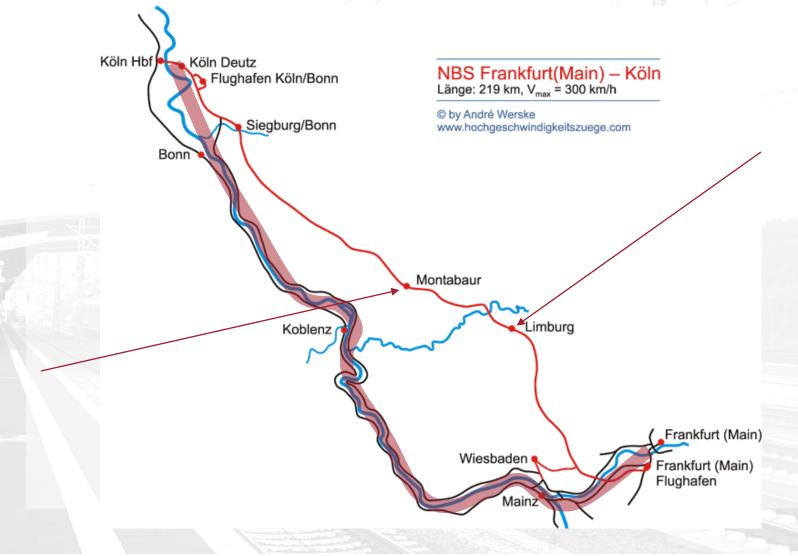
- Permanent shift in economic activity (levels not trends)
- Calculate aggregate tax revenues as PV of future tax streams
 - Based on tax ratio of 22% (BMF, 2008)

Discount rate 5%-10% (capital, maintancence cost, etc.)

 $PVT = \sum \hat{\phi} \times (\log(MA_{it+1}) - \log(MA_{it})) \times GDP_{i1998} \left(\times \frac{TR}{DP} \right)$

- PVT about €13.3-€26.6 billion
 - Large compared to €6 billion construction cost
 - Upper bound estimate since it does not account for substitution effects

Period


Robustness

stency ____

Concl<u>usion</u>

The Cologne-Frankfurt High-Speed Rail Track

Period

Market Access

Modeling Accessibility

Travel time weighted sum of GDP (Harris, 1954)

$$MA_{ht} = \sum_{g} GDP_{gt} \exp(-\alpha \times tt_{hgt})$$

Accessibility shock is change in market access only due to change in travel time

$$x_{h} = \log\left(\sum_{g} GDP_{gt} \exp(-\alpha \times tt_{hgt+1})\right) - \log\left(\sum_{g} GDP_{gt} \exp(-\alpha \times tt_{hgt})\right)$$

Change in travel time matrix

$$tt_{hgt+1} = \min(tt_{hgt}^{car}, tt_{hrt}^{car} + tt_{rst+1}^{HSR} + tt_{hst}^{car}) \leq$$

Fastest combinednetworkpath (Ahlfeldt, 2010, JRS)